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of Virial Coefficients 
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The equation of state of finite systems deviates from thermodynamic limit. The 
corresponding finiteness corrections of virial coefficients are studied. Most 
calculations are based on the canonical ensemble with periodic boundary con- 
ditions. Explicit and implicit finiteness corrections occur. They are displayed up 
to the eighth virial coefficient. These results are applied to hard spheres in one, 
two, and three dimensions. 
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1. I N T R O D U C T I O N  

In this paper, the pressure P will be considered for gaseous systems in the 
canonical ensemble. In the thermodynamic limit TDL, 

P T D L = k B T  ~ Bip i, B1 = 1 (1) 
i=1  

T is the absolute temperature, p the number density, ks Boltzmann's con- 
stant. The virial coefficients B, are functions of temperature. This functional 
dependence is suppressed in the notation since T is regarded as arbitrary, 
but fixed parameter throughout the paper. 

We are interested in the pressure of a finite one-component system 
(particle number N, volumeV, thus p =N/V). For simplicity we assume a 
pairwise additive potential, 

u(r~, r~,..., r , ) =  ~ uu(r,; ) (2) 
l<~i<j~<N 
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380 Kratky 

u o. being the spherically symmetrical pair interaction energy. It is con- 
venient to define (1'2) 

f/j - exp(--uJkBT) -- 1 (3) 

The canonical partition function Q and its configurational (spatial) part 
Qconr will be studied for quasiclassical systems, the tilde in 9 refers to the 
shape of the volume which also influences the thermodynamic quantities in 
finite systems (dimension D): 

Q = (U!)-~(ZzcmkB T/h2)V~r QCO, r (4a) 

Qcnnf=_ fp . . .  f d r l ' . . d r N e x p ( - U / k B T )  

; ;  = p. dr~ drN l-[ (1 +fu)  (4b) 
l<~i<j~<N 

Pressure P is given by (1'2) 

P =  kBT(O in Q/~V)lN,  T, shape ----- ksT(O In Qc~ T, shape (5) 

As a first step, the product ]-I(1 +fu)  occurring in QCO,f is expanded in a 
sum o f f  products. This results in a virial expansion of QCO,f, the first terms 
being proportional to 

1 
B~(9 )  = ff dl'l drzf12 (6a) 

1 
V) = - 3---V fff a~ clr2dr3f,2f~3f23 (6b) B f (  

B+(9)=lfff dr 1 dr2 all'3 f12 f l  3 (6c) 

In homogeneous systems, each point is equivalent. Then, the above 
expressions are simplified to 

= - �89 f dr2f~2 (7a) B f ( V )  

B f  (V) = - �89 ff dr2dr3f12f13f23 (7b) 

B+(V) = [Bf  (V)] 2 (7c) 
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Homogeneity is valid for periodic and spherical boundary conditions. (~'4) 
In the thermodynamic limit, the above expressions turn into 

B f ( V )  TDL) B2 ' B•(P) TDL B3 ' B+(~)  TDL~ B2 2 (8) 

[-cf. Eq. (1)J. Now, we turn to the full finiteness dependence. Expanding 
QCO.f yields 

Qc~ 2B~(~/r)} V-l-4-{(N) [ 1 2 B + ( P ) -  3B3+(P)] 

(~) being combinatorial factors. Accordingly, 

lnQr176 V -  { N ( N - 1 ) B [ ( P ) }  V -~ 

+ {A - � 8 9  2) B~(~')} V - 2 + O ( V  -3) (10a) 

A = N ( N - - 1 ) { ( 2 N - 4 ) B + ( V ) - ( 2 N - - 3 ) [ B ~ ( V ) ]  2} (10b) 

For homogeneous systems, 

A = - N ( N -  1)[B~-(V)] 2 (11) 

[cf. (7c)]. The virial expansion of pressure follows from (5): 

P = k s T((? In Q~onf/~? v)  = k s T ~ Bi(N, ~') pi (12) 
i=1 

with 

B~(N, ~') = B, = 1 (13a) 

B2(N, V)= (1 - N  -~) B2(~') (13b) 

B3(N, V)= (1 - N-I)(4 - 6N I ) B f ( V ) B 2 ( V  ) - (1 - N-l ) (4  - 8N-~)B(k ) 

+ (1 - N - 1 ) ( 1 - - 2 N  1) B3(~" ) 

The quantities B,.(~') and B(V) are defined by 

Bm(V) - B + (V) - (m - 1 ) --1 V[(~B+m ( ~)/~ V], 

B ( 9 )  - B + ( 9 )  - ~ V [  ~B + ( ~)/~ V ]  

(13c) 

m ~> 2 (14a) 

(14b) 
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For homogeneous systems, 

B3(N, 9 ) =  2N-1(1 - N - ' )  B~-(P) B2(P)+ (1 - N  1)(1 - 2 N  -1) B3(~" ) 

(15) 

Except for Section 4, we restrict ourselves to the homogeneous case. Then 
quantities like B + (9) need not be considered particularly. The virial coef- 
ficients Bi(N, V) deviate from B; in two ways: 

(i) Polynomials in N 1 come in which are absent in the TDL; cf. 
(13). These polynomials come from combinatorial factors, Eq. (9). The 
resulting finiteness dependence is called normal, explicit or N dependence. 

(ii) The cluster integrals 2 occurring in B+(V) and BIn(V) are volume 
dependent. The corresponding finiteness effect is called anomalous, implicit 
or V dependence. 

The explicit correction has been known for a long time3 5) It results 
when the implicit dependence is suppressed: 

P~N) =kBT ~ Bi(N) p~ (16) 
i = 1  

with 

BI(N) = B1 = 1 (17a) 

Bz(N) = (1 - N  - l )  B2 (17b) 

B3(N)=2N-I(1-N-I)B~+(1-N-1)(I-2N 1)B 3 (17c) 

In this section, Bi(N, V) have only be displayed for i ~< 3. With increasing i, 
the problem becomes drastically more complicated. The calculations split 
up into two parts: First, the explicit finiteness correction has to be 
evaluated. This will be treated in Section 2. Second, appropriate B+(~ ") 
and Bin(V) have to be substituted for the B m occurring in Bi(N). This will 
be done in Section 3. In Sections 4 and 5, the results will be applied to 
hard spheres in one, two, and three dimensions. 

2. EXPLICIT FINITENESS CORRECTION 

The explicit finiteness dependence has already been studied in 
Refs. 5-9 in a formal way. Especially in Refs. 8 and 9 formulas are given 
which make it possible to calculate Bi(N). However, they use the round- 

2 Unl ike  m = 2 and  3, Eqs. (6a, b), more  than  one cluster  in tegra l  con t r ibu tes  to B + (P') for 

m > 3; cf. (4, 6). 
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about way via cluster integrals, the number of which is quickly increasing 
with i. Correspondingly, Hubbard (8'9~ displays the results only up to i =  5. 
It is the aim of the present paper to obtain Bi(N) up to i =  8. Thus, a 
simpler algorithm is desirable. 

First, we use the fact (6'm) that Be(N) can be expressed as 

i - 1  i - 1  

Bi(N)=Bi+ ~ ABi jN-J= ~ ABioN-J (18) 
j ~ l  j = 0  

ABe. s are the coefficients of the polynomial in N -1, AB~,o = &.ABe, j are 
functions of (B2,..., Be), i >/2. It is not necessary to express the B,, in terms 
of cluster integrals. In the following, Be(N) will be needed as functions of V 
and p: 

i - - I  

Be(N ) = ~ ABe, s V-Sp-J (19) 
j = o  

Thus 

i - - I  

i = l j = 0  j = 0  l = 1  

l being substituted for i - j .  Furthermore, we need the series expansion of 
compressibility, 

kB T(~PTDL/~3p)-i = tBtp,-  1 = Csp'-  ~ (21a) 
t 1 s = l  

C a = 1, C2 = -2B2,  Cs = CriB2,..., Bs), s/> 2 (21b) 

The coefficients C, have also been considered in Ref. 11. For s > 2, the 
explicit functional form C, = C,(B2,..., B,) will not be given here. 

From Eq. (3.25) of Ref. 6, a relation between P(N) and PTOL can be 
deduced, pressure being regarded as function of p and V: 

PTDL(P) = (gP~N)(p, V) (22a) 

(9 = e x p  kE=a V k[(k-[- 1)! 3 - ( F k p ) ( 2 2 b )  

U p  = C,p ~ p (22c) 
s a 

When the exponential (22b) is expanded, the corresponding products of 
(O/Op) k+a are meant to be shifted to the right, c~ thus directly operating on 
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P(N). As to F ~ operating on p, Eq. (22c), the kfold product is interpreted in 
the usual way, e.g., 

F2p = Csp" C,p' p = C,p~ tCtpt- 1 
s = l  t 1 s = l  t = l  

(23) 

Equation (22a) can formally be inverted to yield P(m as (9-~P-rDL as 
proposed in Ref. 6. It is preferable, however, to proceed in another way. 
The solution of (22a) is already known [cf. (20)], only the 3Bi, j have to be 
determined explicitly. This can be done by inserting the expansion for P(N) 
and Pa'DL in (22a). This yields an identity with indeterminate coefficients 
3B~o, each power of V -1 and p yielding a relation which determines a 
coefficient: 

- v - -  = ( k +  (F P) 
n = l  s = l  m = l  k 1 

•  V - J ~  ABz+jop' ) (24) 
' , .j = 0 l =  1 

To obtain (24), the leading term of the exponential [m = 0; cf. (22b)] has 
been taken into account separately, the result being shifted to the left-hand 
side. Equation (24) looks rather complicated, but in fact serves as a useful 
tool to determine AB.,. iteratively. Concentrating on the powers of V-~, we 
notice that n>j.  Thus, unknown AB.., can be traced back to AB.,j with 
n > j. The recursion ends at j =  0, ABi,o being the virial coefficients Bi them- 
selves. 

The case n = 1 will be treated explicitly. This induces m = k = 1 and 
j =  0 on the right-hand side of (24). Thus, the identity (for terms propor- 
tional to V-~) reads 

oo oo 

(25) 

The first nonvanishing term of the last sum occurs for 1 = 2. With r = l - 2 ,  

_ ABs+ s C,pt Br+2p r (26) 
s = l  = r = O  

Now the powers of p have to be identified, s = 1 induces t = 1 and r = 0. 
Thus, 

-- ABzl = Cx B2 = B2 (27) 
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which confirms (17b). s = 2  corresponds to ( t = 2 ,  r = 0 )  or ( t =  1, r =  1). 
Thus, 

-AB3,1 = C2B2 + 3Cj B 3 = --2B~ + 3B 3 (28) 

cf. (21b). The result is consistent with Eq. (17c). Determining AB~,I for 
increasing i gets more complicated, but we calculated all cases up to i =  10 
without too much trouble. In this paper, the results will be given for i ~< 8. 

Now we return to (24). If n = 2, this induces three possible cases on 
the right-hand side: ( m = k = j - - t ) ,  ( m =  1, k = 2 ,  j---0) and ( m = 2 ,  k =  1, 
j = 0). The first case, however, is analogous to n = 1, only j = 1 instead of 0. 
Generally, part of the calculations necessary for n have in fact already been 
done in the case n -  1. Thus, the complexity is not growing too fast with n. 
ABe.,, up to i = 8 (n < i) have been calculated explicitly. The results for i ~< 5 
are just a check since they are already known, (8,9~ the results for i = 6 to 8 
are new. 

It has already been mentioned that ABi,,, are functions of (B2,..., Bi). 
This can be made more concrete. For  combinatorial reasons, the general 
form of the solution is 

i --  1 i--  1 K(i) L ( k )  

B~(N) = ~ N-nABi.,, = ~ N -n ~ ai, n,~ 1-[ B,,k(,), i~> 2 (29) 
n = O  n = O  k = l  l = 1  

where l--* Iik(l) is the kth decomposition of ( i - 1 )  satisfying (4) 

L(k )  

[ I i k ( l ) - - l ] = i - - 1 ,  Iik(1)>/2 (30) 
l ~ l  

Thus, calculating the explicit finiteness correction means evaluating the 
numbers ai.,.k. Again, (29) looks more complicated than it is in practice. 
First we turn to the products occurring in (29). For  i =  2, Eq. (30) has only 
one solution. Thus, / ( (2 )=  1 and L ( 1 ) =  1. The "product" is just B 2 itself. 
For  i =  3, the products B2B 2 = B 2 and B 3 fulfil (30). Arbitrarily, B2B 2 is 
called the first product ( k =  1), B3 the second one (k---2). Then, L ( 1 ) = 2  
and L ( 2 ) =  1 [cf. (29)]. Two products occur for i =  3, thus K (3 )=  2. The 
solution for i = 2 and i = 3 is 

a2,0,~ = 1, a2,1,1 = -- l, a3,0,1 = 0, a3,0, 2 = 1 
(31) 

a 3 , 1 ,  t ~ 2, a 3 , 1 ,  2 = --3, a 3 , 2 , 1  = --2, a 3 , 2 ,  2 = 2 

which is just another representation of Eqs. (17b, c). The results for 
4~< i ~  8 are displayed in Tables I-V.  Instead of the formal number k, the 
kth product [ I B m  is explicitly stated in any case. m is just an abbreviation 
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Table I. B4(N),  Expressed 
in Terms o f  a4,n. k 

Compare Eq, (29) 

Table II. Bs(N),  Expressed 
in Terms of  as.n, k 

n B~ B~B 3 B2B 4 B~ B 5 
n B~ B2Bs B4 

0 1 
0 1 t 8 - - 2 4  16 9 - 10 

1 - 4  9 - 6  2 - 8 0  192 - 9 6  - 5 1  35 

2 16 - 2 7  11 3 192 - 4 0 8  176 90 - 5 0  

3 - 12 18 6 4 - 120 240 - 9 6  - 4 8  24 

of Iik(l). The ai,,,k turn  out  to be integers. Fur the rmore ,  the tables reveal 
several sum rules for the ai,,,k. For  instance, the sum of all co lumns  is zero. 
The  sum of the first row is 1, of the second row is - 1 .  The  sum of the 
further rows vanishes. One  m a y  conjecture that  these sum rules are 
generally valid. This is in fact true. Fo r  instance, we look on the first row, 
i.e., n - 0 ,  

Bi = lim B~(N) = ~ a~,o,k 1-] Bl~ku) (32) 
N ~ c o  k l 

which induces that  a~,0.k connected with I-I Bm = Bi is 1, all others are zero. 
Thus,  the sum of the first row is 1. As to the other  rows, see Section 4. 
N o w  we study the columns.  The  sum of the k th  co lumn is 

i - -1  i - -1  

a,..,k= ~. 1-'a,,..~ (33) 
n = 0  n = 0  

This is the total  cont r ibut ion  of the k th  p roduc t  1-[ Bm t o  B~(N) if N = 1. If  
all these sums are zero, this means  that  no p roduc t  contr ibutes  to 
Bi(N = 1 ), i ~> 2. Thus,  

P(u=I)=k~T(1 + 0 ) = k s T  (34) 

Table III. B6(N ), Expressed in Terms of a6.,, k 

n B~ B~B3 B~B4 B2B~ BzB5 8384 96 

0 1 

1 - 1 6  60 - 4 0  - 4 5  25 30 - 15 

2 320 - 1 0 0 0  540 585 - 2 5 0  - 2 8 0  85 

3 - 1  680 4 680 - 2  240  - 2  340 875 930  - 2 2 5  

4 3 056  - 7  940  3 540 3 600 - 1  250  - 1  280 2 7 4  

5 - 1 680 4 200  - 1 800 - 1 800 600  600 - 120 
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This corresponds to the ideal gas law. This law is really valid for any 
interaction potential as long as only one particle is present since no interac- 
tion takes place then. 

Much more can be said about the ai,,,~. When expanding QCOnf, the 
cluster integrals with s integration variables [cf. Eqs. (6)] are multiplied by 
a combinatorial factor which contains N(N-  1)-.- ( N -  s + 1 ). This may be 
checked when comparing (4b) with (9). When taking the logarithm In QOO,r 
and differentiating with respect to V, Eq. (5), this property essentially sur- 
vives. The correct formulation for the Bi(N) is as follows: Any product 
l~ Bm contributing to Bi(N) is connected with a factor that contains 
t-[r l  - (j/N)], 1 <~j~mmax-- 1, m~a ~ = max(m) of the product considered. 

E xa mpl e  1. B~ and B 3 contribute to B3(N ). Equation (17c) con- 
firms that ( 1 - N - l )  is contained in the contribution of B~, 
(1 - N- l ) (1  - 2 N  -1) of B3. Since B3(N~ o0)= B3, (1 - N- l ) (1  - 2 N  -1) is 
the whole factor of B3, and the factor of B~ must additionally contain N 
(already mentioned properties "of the first row"). Apart from the factor 2 
occurring in the contribution of B~, all other factors can thus be predicted 
just on reflection. 

Example 2. If we look at Table II, the contribution ofB2B 4 can be 
written as (16N ~-96N-2+176N-3-96N-4)B2B4 . In fact, this con- 
tains ( 1 - N  1 ) ( 1 - 2 N - 1 ) ( 1 - 3 N  1): 

16N - 1 - 9 6 N - 2 +  176N 3 - 9 6 N  4 

--- 16N ~(1 - N - ~ ) ( 1  - 2N-l)(1 - 3 N  -~) (35) 

Since mma x/> 2, the contribution of any product is at least proportional to 
( 1 - N - ~ ) ,  which induces the sum rule for the columns [cf. (33)]. 

The above regularities of a~,,,k have considerable physical consequen- 
ces: If virial coefficients B~(N) are considered with i > N, then mma~ > N in 
at least one product contributing. Thus, integrals over m~a. points ("par- 
ticles") occur even when not so many particles are physically present. 
However, owing to the combinatorial factor, the contribution of the 
corresponding products vanishes. Thus, one need not worry about any 
contradiction between mathematical and physical dusters. 

3. F U L L  F I N I T E N E S S  C O R R E C T I O N  

Incorporating the implicit finiteness correction is not so difficult as it 
seems to be. In fact, this problem has already been solved formally, ca) In 
the present paper, the solution will be displayed in a more intuitive way. 



390 Kratky 

We start with the explicit correction. Bi(N) is a virial coefficient of P(N) 
[cf. (16)-]. Equation (29) shows the expansion of Bi(N) in terms of N -1 
and products l-[ B,,. In the following, we concentrate on these products, 
the other quantities are not changed when incorporating the implicit 
correction. In a first step, all Bm are substituted by B+(~). The 
corresponding virial coefficients will be termed B + (N, ~'): 

P+=k~T ~ B+(N, V)p', B~(N, ~')=1 (36) 
i = 1  

P+ is not yet the true pressure P defined in Eq. (5). To obtain B~(N, V) 
and thus P, a second step is necessary, i.e., the substitution 

L,k, = 1 ] 
1-~ BL (V)~ BI,kr ]] B,~+,j,(P) (37) 

I,~ L i -1  J / = 1  j ~ l  

[cf. (29)]. The product of L(k) coefficients B+(P)  splits up into L(k) 
products with one Bm(V), Eq. (14a), and L(k)-1 coefficients Bm+(~'). If 
i=  4, the products B2BzB2, B2B3, and B 4 occur (cf. Table I). Then, the 
two steps mentioned are 

B2B2B 2 --. B;(P) B;(V) B;(V) -~ B2(V) B;(V) B;(V) (38a) 

B2B 3 ~ B;(V) B;(V) ~ �89 ) B;(~') +~B~(V) B3(~) (38b) 

B4 --* B~(V) ~ B4(~" ) (38c) 

Thus, the full finiteness correction can be constructed on the basis of the 
explicit correction alone. Accordingly, Tables I-V can also be used for the 
full correction, the designation of the columns has only to be changed using 
the two steps; see (38) for Table I. In this sense, N and V dependences 
occur separately. Especially, all sum rules treated in Section 2 remain valid. 
Therefore, coefficients Bm+(~ ") or BIn(V) formally contributing to Bi(N, V) 
do not really contribute if m > N. The combinatorial factor is zero then�9 
This has been overlooked in Ref. 6. Thus, one need not distinguish between 
k ~< N and k >  N in Eq. (3.2) of that reference, and the comments after 
(3.29) are also not valid. In fact, the method proposed in (3.25) is correct 
and yields the true finiteness corrections. 

Up to now, PTDL, P(N), P+, and P have been considered. In P(N), the 
implicit correction is suppressed. On the other hand, suppressing the 
explicit correction in P+ andP, i.e., taking the limit N ~ 0% yields P~-v) and 
Pc v), respectively: 

P~v)=kBT ~ B+(~') p ~, B~-(P)= 1 (39a) 
i = 1  

Per) = ksT ~ Bi(V) pi, BI(~" ) = 1 (39b) 
i = 1  
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This follows from the properties "of the first row." To obtain this consistent 
formulation, the notation B+(~ -) and Bi(V) has been introduced when 
defining volume-dependent virial coefficients in Section 1. 

There is an interesting connection between Pc v) and the pressure Pg in 
the grand canonical ensemble. (6) The partition function Z =  Z(#, ~', T) in 
this ensemble is given by 

Z(#, 9, T)= ~ exp(ltN/kBT) Q(N, ~', T) (40) 
u=0 

# being the chemical potential. As to Q = Q(N, V, T); see Eqs. (4). Unlike 
the canonical ensemble, N and thus p is fluctuating now. The mean value 
shall be denoted by pg. The connection between pressure and partition 
function is 

P+ =k~TV -11n Z (41a) 

Pg = kBT(D In Z)/~V)]~.v, shap ~ (41b) 

Pg is the correct pressure in the finite system, P+ is the usual pressure 
considered, (6) which is equal to Pg only in the thermodynamic limit, but is 
more directly related to Z. If the grand canonical ensemble is characterized 
by (pg, Vg, Tg) and the canonical ensemble by (p, ~, T), the following 
relations hold: 

(pg, gg, Tg)=(p, ~', T): Pg =P~-v~, Pg=P(v) (42) 

Thus the two ensembles are characterized by the same implicit finiteness 
correction, the explicit correction being absent in the grand canonical 
ensemble. By the way, Pg is identical to the average of the canonical P over 
the grand canonical ensemble. ~6) 

Now, we turn to the deviations from thermodynamic limit (in the 
canonical ensemble): 

AP(N) ~ P(N) -- PTDL 

APfv) =- P~v)- PTDL 

AP(v) -- P(v) -- PvDI~ 

(43a) 

(43b) 

(43c) 

Usually, these deviations are small compared with PXDL. Then, their 
influence on the whole finiteness correction will be additive: 

P+ = PTDL + AP(N) + AP~-v) + AP~+NV),,~PTDL + AP(:v~ + AP~-v) (44a) 

P ~- PTDL + AP(N) + AP(v) + AP(Nv)~PTDL + AP(N) + AP(v) (44b) 
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the small cross-terms AP~Nv) and AP(Nv) being negligible. This has already 
been used in Refs. 10 and 12 for hard disks with periodic boundary con- 
ditions. Hard-core potentials are especially appropriate for neglect of 
AP(Nv) since for periodic boundary conditions (6) 

B + (P) = Bin(~') = B m if m <~ ELm,./a] (45) 

where [Lmtn/a ] means integral part of Lmin/a. a is the range of the inter- 
molecular potential, Lmi n the length of the smallest side of the periodic cell 
(considered to be rectangular). For  hard-core potential, a = cr is especially 
small, so that the first few Bm + (~') and Bin(~') are identical to Bm if N is not 
too small. On the other hand, the main contribution of the explicit 
finiteness correction comes from the first few virial coefficients. (~2) Thus 
there is almost no "mixing" of finiteness effects for hard disks and spheres, 
AP(Nv)~O. In the one-dimensional case (hard rods), the situation is 
especially simple: 

N <. [Lmi./a ] --- [V/a] (46) 

Thus, no implicit finiteness correction occurs at all. Up to m = IV/a], 
Eq. (45) can be imployed. If m >  [V/a], m > N  due to (46). In this case, 
the Bm+(V) and Bm(V) do not contribute to B~(N, V) according to the com- 
binatorial reason discussed above. 

4. HARD RODS IN THE CANONICAL ENSEMBLE 

For hard rods of length a, the thermodynamics is well known. (13) 
Nevertheless, studying this system will give more insight in the formalism 
proposed. For  periodic boundary conditions PBC, 

PBC: P/(pkBT) = 1(1 - N -~) ap(1 - ap) -~ (47) 

with the thermodynamic limit 

PTDL/(pkBT) = 1 + ap( l  -- crp) -1 = (1 -- ap) -~ (48) 

In the molecular dynamics ensemble MD, it follows from the formula (~3) 

PMD/(pkBT) = 1 + [P/(pksT ) - 1]/El - N  -1 ] (49) 

that 

PMD = PTDL (50) 
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for hard rods with periodic boundary conditions. The virial coefficients Bi 
are just a i -  1 [cf. (48)]. Furthermore, there is no implicit finiteness effect as 
shown in Section 3. Thus, 

P = P<N), B~(N, V) = B , (N)  (51) 

From Eq, (47) it follows that 

B ~ ( N ) = ( I _ N - I ) r  2, i>~2 (52) 

This can be used to prove the "sum rules for the rows," Section 3. Since 
Bi = a i -  1 now, all products 1-[ Bm occurring in (29) have the same value 
ai-1 [cf. (30)]. Thus, 

{'~1o N - -  x(i) } 
Bi (N)= ~ ae,,,~ a i-~, i>~2. (53) 

n k = l  

Comparing (52) with (53) yields for i~>2 

n = 0: ~ ai, n,~ = 1 (54a) 
k 

n = 1: ~, ai,  n, k = - - 1  (54b) 
k 

(54c) n/> 2: ~ ai, n.k = 0 
k 

which are the sum rules mentioned. 
In the simple case of hard rods, it is worthwhile to study rigid boun- 

dary conditions RBC which induce inhomogeneity [cf. Section 1]. The 
particles are confined in a volume V*, V* being the distance between the 
"hard walls," which are just points in the one-dimensional case. Now we 
assume that the left wall remains fixed, but the rods shrink to points. Their 
position and that of the right wall are shifted to the left in such a way that 
the distances of adjacent ends turn into distances of the points. Then, 

V* ~ V* - N a  (55) 

The thermodynamical situation (P, T) is not changed. For the points, 
however, the ideal gas law must be valid. Thus 

RBC: P( V* - N o ) / ( N k B  T) -= 1 (56) 

If N / V *  is interpreted as p, P = P T D L  would result [cf. (48)]. However, this 
is not true. For rigid boundary conditions, one must think about the mean- 
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ing of volume. If V* is the distance between the walls, only V * - a  is 
accessible to the centers of the rods. (For periodic boundary conditions, 
there is no such difference.) We have to go back to the foundations of 
statistical physics. Strictly speaking, the potential energy of a configuration 
also depends on the interaction with the wall: 

N 
Ut~ r2,-", r u ) :  2 uwall(ri) + U(rl, r2,'", rN) (57) 

i=1 

[cf. (2)]. Equation (4b) changes to 

the limitation of the integration region being hidden in 
f~ ~_ exp( - u'~all/ke T). The leading term of Q~~ when expanding ]-1(1 + f0) 
is (~ dr~fi) u. This corresponds to the ideal gas term known as V u. Thus 

V = f dr1 exp( - u~(an/kB T) (59) 

Strictly speaking, the value of the volume depends on the particle-wall 
interaction. For the hard-core interaction, V reduces to the volume which 
is accessible to the centers of the particles. Then Eq. (4b) remains strictly 
valid even for rigid boundary conditions. 

In the case of hard rods, we have to identify V with V * - a .  Then 
Eq. (56) turns into 

RBC: P = k B T p [ l _ ( l _ N - 1 ) ~ p ] - l = k ~ T ~  ~ ( I _ N - 1 ) a ] ~  lpi 
i=l 

(6o) 

The corresponding pressure is neither PTDL [Eq. (48)] not the pressure for 
periodic boundary conditions [-Eq. (47)]. The latter equation represents 
the explicit finiteness correction alone [cf. (52)]. In (60), the implicit 
correction for RBC is additionally present. Strangely enough, V does not 
occur in (60). To get further insight, we calculate the first few virial coef- 
ficients directly [cf. (6) and (14)]: 

B2( ~')/~ = 1 - a~ V 
B~(~)/~ 2= 1--2a/V V>~a (61a) 

~ 3 ( ~ ) / ~ 2  = 1 - a / v  
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B +(V)/a 2 = 1 - 5a/V) (61b) 

B(~')/cr 2= 1 �88 V>>,2a 

Owing to inhomogeneity, in fact B + ( V ) r  2 [cf. (7c)]. If V < a  or 
V<2a, the corresponding virial coefficients displayed in (61a, b) have 
another functional form. However, this does not affect the equation of state 
since N < 2 and N < 3 follow from V < a and V <  2a, respectively. This is 
just the condition that the corresponding virial coefficients do not con- 
tribute to the pressure; see Section 3. 

From (61), virial coefficients Bz(N , V) and B3(N, V) result: 

B2(N, ~') = (1 - N  -1) a(1 - a/V) (62a) 

B3(N, ~') = (1 - N -1) a2[1 - 2(a/V) + N-~(a/V) + 2(a/V) 2 - 3N-~(a/V) 2 ] 

(62b) 

Eq. (60). [cf. (13b, c)]. At first sight, this seems in contradiction to 
However, it is possible to express (a/V) as N - l a p :  

B2(N, 9 ) =  (1 - N  -1) a(1 - N - l a p )  (63a) 

B3(N, V ) = ( 1 - N  1)a2(1-2N- lap+N-2ap+2N-2a2p2-3N 3a3p3) 

(63b) 

Thus, the sum Z Bi(N, V) pi may be rearranged so that the powers of p in 
the representation (63) are collected. In fact, this yields (1 - N  1) a for the 
coefficient proportional to p and [ ( 1 - N  -~) a ]  2 for that proportional to 
p 2. Since the leading term of B4(N, F') is ( 1 -  N -1) ~3, even the subsequent 
coefficient can be calculated from (63b) and turns out to be 
[ ( 1 - N  -~) ~]3  Now, consistency with (60) is achieved. 

5. H A R D  D I S K S  A N D  S P H E R E S  

We return to periodic boundary conditions and consider the finiteness 
corrections for hard disks and spheres in the canonical ensemble. In 
Ref. 10, the computer experimental pressure of the hard-disk fluid was com- 
pared with theory; see Eq. (44b). No final decision could be made if the 
neglect of zJP(Nv) w a s  responsible for the discrepancy occurring. 
Approximations (14/ in the expression for AP(v) or extrapolation errors in 
AP(m have also to be taken into account as possible reasons for the dis- 
crepancy. In the following, we concentrate on the last possibility. The 
results of the present paper make it feasible to determine AP(N ) more 
accurately. Table VI shows the hard-disk values of ABi,~, i ~< 7, which have 
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been calculated using (31) and Tables I-IV. The virial coefficients Bi, i~< 7, 
have been taken from Ref. 12. They are also included in Table VI (in units 
of B2). For easier comparison with literature, we consider the com- 
pressibility factor Z = P/(pk~ T) instead of P in the following: 

Z ( m =  ~ Bi(U)pi-~= ~ [Bi(N)/B~ l](B2p)i-1 (64) 
i = I  i = I  

[cf. (16, 17)]. Thus, measuring virial coefficients in units of Bz is equivalent 
to measuring density in terms of (Bzp). Equations (18) and (43a) suggest 
definition of quantities AZ~N), 

Z ( N  ) = Z T D  L + z ~ Z ( N  ) = ~ AZ(~N)N -" (65a) 
n--O 

3Z(~m.-~ ~ (ABJB~2 ~)(Bzp) i - I  (65b) 
i = n + l  

Now Table VI may easily be interpreted. The first column (after the num- 
bering i) yields successive contributions to AZ~N~=ZTDL, the (n + 1)th 
column to 3Z("N). It is remarkable that all Bi displayed are positive, all 
AB~.~ negative, whereas the ABe,, for higher n have alternating sign. The last 
property together with the factor N " [Eq. (65a)] suggests that 3ZI~N~, 
n > 1, is negligible for hard disks if N is not too small. This has already 
been conjectured in Ref. 10 from the results for i ~< 5. In that paper, N = 48 
and the high fluid density (B2p)= 1.2956 have been investigated. For these 
values, summing up all terms up to i = 7 yields because of Table VI 

7 

Z~N)[U p to i = 7] -- Z B~(N) y - 1  = 6.974(2) - 0.57(1) - 0.0000(2) 
i = l  

+ 0.0002(0) - 0.000l(0) + 0.0000(0) - 0.0000(0) (66) 

The successive terms N n z]Z~N)[U p to i =  7], 0 <~ n ~< 6, are displayed 
[cf. (65)]. The numbers in parentheses are the uncertainties of the last 
digits. In fact, the contributions from n > 1 are very small. Accordingly, one 
need not worry about extrapolation to higher i. As to n = 0  and 1, 
extrapolation is necessary, n = 0 means ZTDL which is known very well for 
hard disks. (~z~ The case n =  1 has been treated in Refs. 10 and 12, 
reasonable extrapolations yielding 

AZ~uJN= --0.059 (Ref. 12), AZ~m/N= -0.061 (Ref. 10) (67) 

[cf. (66)]. However, AZ~N)/N=-0.133 would be necessary in order to 
remove the above-mentioned discrepancy theory--experiment in Ref. 10. In 
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the meantime, Eq. (67) has been confirmed by a Pad6 approximant 
analysisJ 15) Thus zlZ(NI as proposed in Ref. 10 is correct and errors in 
AZ(v) or zlZ(Nv) must be responsible for the discrepancy occurring. 

Now we turn to hard spheres. Table VII shows the corresponding 
ABi, n, i~< 7. The virial coefficients have been taken from Refs. 16 and 17. 
The uncertainties of B 6 and B7 displayed in Table VII are rough 
estimates.~s) 

It is interesting to compare the AB~,n values for hard spheres with those 
for disks (Table VI) and rods. For the latter, 

AB~,o/B~ 1 = 1 

ABi,1/Big- 1 = _ 1 

AB~../B~ 1 = O, n > 1 

(68a) 

(68b) 

(68c) 

[cf. (52)]. As far as the coefficients are known, all B; = ABi, 0 are positive 
for hard rods, disks, and spheres. The ABi,1 are negative for rods and disks, 
but have alternating sign for spheres. ABi,, with n > 1 vanish for rods and 
alternate in sign for disks and spheres, n being held fixed. The absolute 
values IABe, n[, n > 1, increase rapidly when passing from rods to spheres. 
Both Bi and ABi.1 exhibit the slowest convergence for rods, the quickest for 
spheres. It is remarkable that IABe, II<B~ for disks and, even more 
pronounced, for spheres. As Tables I V show, ABe.~ is built up from con- 
tributions of different products I-I Bm with large factors. However, the con- 
tributions almost cancel in order to yield a small AB~,I. Incidentally, the 
same is already the case with the cluster integrals contributing to B m; see 
Ref. 16. For hard spheres, AB7,1=0.002+0.004 cannot even be dis- 
criminated from zero. The approximation AB~,I = 0 for i >~ 7 probably yields 
very accurate estimates of Bi, i >~ 7. On the other hand, volume-dependent 
cluster integrals (due to the implicit correction) may not cancel in the 
above sense. Thus slight changes in the implicit correction may change the 
total pressure considerably. This means that the approximation AZ~Nv)= 0 
is probably not so good as it seemed to be. 

In Ref. 17, the hard-sphere f luid was studied via computer simulation. 
The accuracy of pressure was much higher than in older papers. Thus 
finiteness effects could be investigated in detail. It turned out that in most 
cases the approximation 

Z = Z T D  L JI- ~Z~N)N -1 (69) 

was accurate enough. In this representation, Z is a straight line as a 
function of N -1 for given density. Only for the highest fluid density 
(B2p= 1.8512) and the smallest particle number (N= 108) studied, the 
deviation from this simple behavior was unquestionable. The case 
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(Bzp=l.4810,  N=108)  was doubtful. Eighteen other experimental 
Z(Bzp, N) remained which were used for a least-squares fit of Pad6 
approximant [3/2] for Z-mE. Virial coefficients B 2 -  B 5 were taken from 
Ref. 16, 8 6 and B 7 were  determined by the least-squares fit mentioned. 
Thus the results for 9 6 and B 7 (cf. Table VII) are not independent. 3 Unlike 
the present p a p e r ,  AZ~N ) was indirectly evaluated via the ensemble correc- 
tion for the NPT ensemble. (18) This roundabout way will be treated in the 
Appendix. We can use Table VII for checking the results of Ref. 17 concer- 
ning AZ~N ). As mentioned above, ABi.I have alternating sign, the absolute 
values quickly decreasing. No Pad6 approximant is necessary. A simple but 
very good approximation is cutting the series after i =  5 (or even after 
i=4) :  

AZ~N ) = - ( B 2 p  ) Av 0.1250(O21o)  2 - 0.0967(B2p) 3 + 0.0043(B2p) 4 (70)  

The terms for i >  5 being negligible, Eq. (70) remains unchanged when 
i m p r o v i n g  B 6 and 9 7 from the old values (Ref. 16) to the new ones 
(Ref. 17). This is not the case for Z~-DL itself, where a Pad6 approximant 
i n c l u d i n g  B 6 and B7 is necessary for accurate representation. Thus the 
straight line Z [Eq. (69)] is shifted in a parallel way when improving 9 6 

and 9 7. This is confirmed by the figures of Ref. 17. Moreover, from these 
figures it can be deduced that the indirect method via the NPT ensemble is 
consistent with the direct method treated in the present paper. 

The last point which remains open is the inappropriateness (17) of 
Eq. (69) for B2p = 1.8512 and N =  108. In this case, summing up all terms 
up to i =  7 (Table VII) yields 

Z(m[u p to i = 7] = 9.483(1) - 0.017(2) - 0.0073(5) + 0.0032(2) 

- 0 .0002(0 )  + 0 .0000(0 )  - 0 . 0000 (0 )  (71)  

This may be compared with Z(m up to i = 7 for hard disks [Eq. (66)]. As 
already mentioned, the contributions to AZ(nm, n > 1, are larger for spheres 
than for disks. For instance, AZ~N ) cannot simply be neglected without 
further consideration. The Pad6 approximant [2/2] for AZ~u ~ is 

zIZ~N) = _0.7500(B2p) 2 1 - 1.4075(B2p) + 0.6749(B2p) 2 
1 + 1.6344(B2p) +0.8331(B2p) 2 

(72) 

the approximant being based on ABi, 2, i<~7. It turns out that the alter- 

3 However, we assumed independence when calculating the error of AB7,,, n>~ l, which 
slightly underestimates the error. 
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nating contributions of ABi, 2 cancel to a high amount, resulting in 
AZ~N ) = --0.264 for B2p = 1.8512. With N-- 108 this yields 

z I Z ~ N ) N  - 2 = - 0 . 0 0 0 0 2  (73) 

Therefore, this contribution to Z(N ) is really negligible. It turns out that the 
same is true for AZ(~NI with n>2 .  Thus the deviation of Z from 
approximation (69) must be due to the implicit finiteness effect, zlZ(v), and 
(possibly) zIZ(Nv), In fact, B2p = 27~a3N/V= 1.8512 means (Lmin/O-) =4.96 
for a cubic box (V= L3in) and N =  108. From Eq. (45) it follows that virial 
coefficients starting with the fifth are effected by the implicit correction. 
Since at the high fluid density B2p = 1.8512 virial coefficients beyond the 
fifth contribute considerably, the implicit finiteness correction is really 
responsible for the deviations mentioned. 

In this paper, the finiteness dependence of virial coefficients Bi(N; V) 
has been studied. Two types of correction occur: the explicit and the 
implicit finiteness correction. As to the former one, expressions in terms of 
Bi, the virial coefficients in the thermodynamic limit, have been exhibited 
for i~< 8. Best use of these expressions can be made for hard disks and 
spheres since the Bi up to i = 7 are known quite accurately for these poten- 
tials. Owing to a new graph expansion, (2'~9) also B8 seems within reach, at 
least for hard disks. Including the implicit finiteness correction is no 
problem formally, but the practical evaluation is difficult. Approximate 
treatment can be found in Refs. 6, 10, 12, and 14. A special problem is the 
cross-correlation between explicit and implicit corrections. Up to now, the 
corresponding cross-terms have been neglected, which may be an 
explanation of discrepancies theory-computer experiment. (~~ Thus a bet- 
ter knowledge of the implicit correction including the cross-terms would be 
desirable. 
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APPENDIX 

In the pressure ensemble N, P, T, and the shape of the volume are 
fixed. In Z = P/(pk~ T), p is now the mean value of fluctuating density. Z 
may be expanded in powers of (P/kB T), 

ZNeT = ~ Di(N, shape)(P/kB T) ~- I (A1) 
i=1 
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The finiteness dependence of D~(N, shape) is much simpler than the correc- 
tion in the canonical ensemble(17'18): 

Di(N, shape) = Di(N), i <~ N (A2) 

Di(N) = Di + zJDi,1N -~ (A3) 

To a given N, P, and T, the according PTDL may be attributed according to 
Eq. (1). Inserting (1) in (A1) results in 

ZNp T = ~ Ei(N, shape) PTDLi- 1 (A4) 
i=l 

the Es(N, shape) having the same properties as the Di(N, shape) 
[cf. (A2), (A3)]. Implicit finiteness correction may be neglected now since 
the contributions of the coefficients with i > N usually are small. (Compare, 
however, Ref. 20). Thus 

ZNPT ~- ZTDL ~_ AZINeTN - 1 (A5) 

AZ~N~r meaning AZ~w) in the NPT ensemble. In Ref. 17, a connection 
between this quantity and z~ZNv T I  =--z~Z~N ) in the canonical ensemble is 
provided. This connection can be formulated in terms of x = B2pTo L in the 
following way: 

ZTD L + ZTD L I ZTD L 
AZ1NvT=AZ1NPTI. ~ ] -- l --: [zZ:DD~ q- 2TDL 1 + (A6) 

where 

ZTDL =-- x(SZTDL/SX), ZTDL =-- x(SZmL/OX) (A7) 

This was used in Ref. 17 to calculate AZ~Nvr via AZ~uer. Concerning the last 
quantity, the results of Ref. 18 were inserted. This method, however, seems 
unnecessarily complicated: From Ref. 6 it follows that 

AZiNvT = --I(ZTDL + ZTDL)/(ZTDL + ZTBC) (AS) 

This may also be obtained from Eqs. (21) and (22) using 

(9 = 1 + (2!V)-t(Flp)((?/Op) 2 + O(V -2) (A9) 

Comparing the indirect method (A6) with the direct one (A8) reveals the 
interesting identity 

AZ1NPT[1 + (ZTDL/ZTDL) ] -- 1 = 0 (A10) 
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If the implicit finiteness correction can be neglected in the N P T  ensemble, 
combination of (A5) and (A10) yields 

ZNeT  -~ ZTD L -]- N-t(1 + x0 In ZTDL/OX ) 1 (All)  

This apparently new formula provides a very simple representation of ZNp T 

in terms of ZTDL. 
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